De-resuscitation in Intensive Care
The accumulation of a positive fluid balance is a frequent occurrence in critically ill patients. As Paracelsus said, ” All things are poisons, nothing is without poison. Only the dose […]
Remifentanyl Vs Fentanyl Dr Swapnil Pawar
Analgesics Dr Swapnil Pawar
Effects of the sudden and sustained increase in LV Afterload Dr Swapnil Pawar
NONSEDA Trial Dr Swapnil Pawar
Nonsedation or Light Sedation in Critically Ill, Mechanically Ventilated Patients
Invasive mechanical ventilation after tracheal intubation is among the most frequently performed procedures in adult patients admitted to the intensive care unit (ICU). Sedation and analgesia are provided at the time of intubation and may be maintained for hours or days. The aim of sedation is to minimize oxygen consumption and facilitate a patient’s ability to remain comfortably connected to a ventilator. Over the past two decades, it has been recognized that prolonged and deep sedation can increase the duration of mechanical ventilation, delay weaning, impair neuromuscular function, produce delirium, and have side effects specific to certain sedative drugs,1 such as prolongation of their effect after discontinuation because of pharmacokinetic changes. However, omitting sedation for mechanical ventilation is complicated by the reluctance of caregivers to nurse patients who are agitated or in pain.
Daily sedation interruption (DSI) is thought to limit drug bioaccumulation, promote a more awake state, and thereby reduce the duration of mechanical ventilation
Although advances in technology have made modern ventilators more comfortable for patients, it has generally been believed that light sedation should accompany mechanical ventilation.
What’s known on this topic so far?
In a trial published in the Journal in 2000, daily interruption of sedation resulted in fewer days on mechanical ventilation and in the ICU than usual care.2 This approach was extended in a trial in which early implementation of daily interruption of sedation was combined with a weaning protocol; the trial showed that the time to extubation and the length of ICU stay were shorter and survival was longer with this combined approach than with usual care.
However, that a meta-analysis did not entirely support the hypothesis that the approach of daily interruption of sedation was better than foregoing daily interruption.
In a single-center trial published in 2010 in Lancet, we reported that a plan of no sedation was associated with more days without mechanical ventilation and a shorter stay in the ICU or hospital than a plan of sedation with daily interruption.5 The trial was not statistically powered to show a difference in mortality between the trial groups (the nonsedation group and the sedation group).
Of 428 patients assessed for eligibility, we enrolled 140 critically ill adult patients who were undergoing mechanical ventilation and were expected to need ventilation for more than 24 h. Patients were randomly assigned in a 1:1 ratio (unblinded) to receive: no sedation (n=70 patients); or sedation (20 mg/mL propofol for 48 h, 1 mg/mL midazolam thereafter) with daily interruption until awake (n=70, control group). Both groups were treated with bolus doses of morphine (2.5 or 5 mg).
A post hoc analysis showed a lower incidence of acute renal failure in the nonsedation group.
According to recent international guidelines on sedation for mechanical ventilation, a RASS score of −2 to + 1 is defined as light sedation.
(SPICE) III trial, which was recently published in the Journal, the sedation goal was light sedation, but the investigators reported a median RASS score of −3 to −5 for more than 40% of the patients both groups. So there is discrepancy in what we want and what we achieve on day to day basis.
Question –
Whether a plan of no sedation in patients receiving mechanical ventilation would result in a better survival outcome than a plan of light sedation with daily interruption.
Design: This study was a randomized controlled trial involving eight Scandinavian ICUs (Denmark 5, Norway 2, Sweden 1). The assignment sequence was computer generated with a variable block size. Patients were stratified according to participating center, age (≤65 years or >65 years), and the presence or absence of shock on arrival (systolic blood pressure, <70 mm Hg or ≥70 mm Hg)
Study population
Inclusion criteria:
Adult patients, 18 years and older, within 24 hours of intubation, and expected to receive mechanical ventilation for more than 24 hours.
Excluded:
Severe TBI
Patients who underwent therapeutic hypothermia
Status epilepticus
Patients who were in a coma
Brain-dead
P/F ratio of 9 (67.5 mm Hg) or lower
Sedation necessary for oxygenation or patients were prone ventilated.
No sedation group: Bolus morphine for pain relief as judged by the physician; no sedatives were administered. Patients were awake and able to communicate and allowed to have a natural sleep rhythm. If, sedation was considered necessary, in spite of nonpharmacologic management or analgesic treatment, similar sedative medications as in the sedation group were administered. Crossover to the sedation group was not allowed.
Sedation group: Sedatives administered as continuous infusion; propofol for the first 48 h, and midazolam after 48 h. Titrated to −2 to−3 on the Richmond Agitation and Sedation Scale. Sedation was interrupted every morning aiming for a fully awake state. This meant, at least three of the following requirements were met. 1. Open eyes to call 2. Follow instructions with the eyes 3. Squeeze the examiners hand on command 4. Protrude tongue on command. Weaning was attempted during this period; if the PEEP could be reduced to 5 cm H2O and FiO2 to 0.4, sedation was not recommenced. Otherwise, sedation was continued at half the dose. Sedation was recommenced if the patient was uncomfortable. Boluses of clonidine were administered for anxiety.
Common management: A basic analgesic regimen with paracetamol and bolus opioids. Epidural analgesia as appropriate. Delirium assessment using the CAM-ICU method twice a day (delirium present, no delirium, or unable to evaluate). Non-pharmacological methods by reassurance and mobilization if delirium was present. Haloperidol or olanzapine if non-pharmacological methods were ineffective. ICU discharge according to local practice and physician judgement. Thrombo-prophylaxis according to usual practice.
Sample size calculation: 700 patients (350 in each group) would provide the trial with 80% power to show that an intervention would result in a 25% lower relative risk of in-hospital death, assuming a of type I error of 5% and of type II error of 20%.
2300 patients assessed for eligibility 1590 excluded (mostly for not fulfilling inclusion criteria) 710 randomized
Acute Physiology and Chronic Health Evaluation (APACHE) II was 1 point higher in the non-sedation group than in the sedation group. Otherwise, both groups were matched at baseline.
Primary outcome (no sedation vs. sedation)
All-cause mortality at 90 d: Not different
148/349 (42.4) vs 130/351 (37.0). Absolute difference: 5.4 (−2.2 to 12.2)
Secondary outcomes (no sedation vs. sedation)
Patients with DVT/PE up to 90 d 1 (0.3) vs. 10 (2.8); −2.5% (−4.8 to −0.7) (significantly less with nonsedation)
No: of days until death up to 90 d: 13 (6–27) vs. 12 d (5–28); 1(−2to5)
Coma-free (RASS score of at least −3) and delirium-free (a negative CAM-ICU assessment) days until 28 d: 27 vs. 26; 1(0to2). (One coma-free, delirium-free day in 28 d with nonsedation)
Highest score on RIFLE up to 28 d: 2 vs. 2 0; (−1to1)
ICU LOS until 28 d or until death (whichever occurred first): 13 (0-23) vs. 14 (0-23); −1(−7to4)
Ventilation-free days up to 28 d: 20 (0–26) vs. 19 (0–25); 1 (−3 to 3)
Exploratory outcomes
Accidental extubations (with reintubation within 1 h): An accidental extubation that led to reintubation within 1 hour occurred in four patients (1.1%) in the non-sedation group and in one patient (0.3%) in the sedation group (unadjusted risk difference, 0.8 percentage points; 95% CI, −0.7 to 2.6; P = 0.20).
Accidental CVC removals (with reinsertion within 4 h): None
Strengths –
Limitations –
Conclusion –
The results from this trial are important because they arouse concern about omitting sedation in mechanically ventilated patients and reinforce the need to monitor sedation clinically with the aim of discontinuing it as early as possible or at least interrupting it daily. Such monitoring should be performed continuously (24 hours per day, every day) on the basis of standardized criteria that can be applied uniformly in an ICU.
Dr Swapnil Pawar February 20, 2020
The accumulation of a positive fluid balance is a frequent occurrence in critically ill patients. As Paracelsus said, ” All things are poisons, nothing is without poison. Only the dose […]
Dr Swapnil Pawar June 13, 2024
Dr Swapnil Pawar March 16, 2024
©Allrights reserved. Get Your Web Site Designed By St.George Web Design. Get a quote on your web design.